15,305 research outputs found

    ILR Impact Brief - It’s a Paradox: Union Workers Less Satisfied but Less Likely to Quit

    Get PDF
    [Excerpt] Existing economic models of human behavior do not adequately deal with the seeming inconsistency between union members’ attitudes about their jobs and their subsequent actions. A more promising explanation might derive from job satisfaction theory, which suggests that union members have a particular set of values, expectations, and frames of reference that they use to evaluate the outcomes of their work effort. Individuals who join unions may place higher value on wages and benefits, which are the focus of most collectively- bargained contracts, than do non-union workers; historically, unions have delivered in this regard. Unionized workers may be more dissatisfied because of a more adversarial climate (e.g., testy supervisory and interpersonal relations, narrowly-defined jobs) but are less likely to quit because the things they value most—good wages and benefits—are provided

    Experimental studies of perceptual processes, section two Progress report, Jan. - Sep. 30, 1965

    Get PDF
    Complex discriminative behavior, fixed ratio reinforcement of large units of behavior and deferred reinforcement studied in chimpanzee

    Organs from animals for man

    Get PDF
    In the following review some of the problems of xenotransplantation shall be discussed, based on the few experimental data available so far and on reports in the literature describing investigations which may be of importance for xenotransplantation. The impact of gravity on the upright posture of man versus almost all other mammals, the dysfunction between enzymes and hormones in different species and the lack of interactions between interleukins, cytokines and vasoactive substances will be taken into consideration. The question must be asked whether different levels of carrier molecules or serum proteins play a role in the physiological network. Even though the development of transgenic animals or other imaginative manipulations may lead to the acceptance of any type of xenografted organ, it has to be established for how long the products of the xenografts are able to act in the multifactorial orchestra. We are far from understanding xenogeneic molecular mechanisms involved in toxicity, necrosis and apoptosis or even reperfusion injury and ischemia in addition to the immediate mechanisms of the hyperacute xenogeneic rejection. Here, cell adhesion, blood clotting and vasomotion collide and bring micro-and macrocirculation to a standstill. All types of xenogeneic immunological mechanisms studied so far were found to have a more serious impact than those seen in allogeneic transplantation. In addition we are now only beginning to understand that so-called immunological parameters in allogeneic mechanisms act also in a true physiological manner in the xenogeneic situation. These molecular mechanisms occur behind the curtain of hyperacute, accelerated, acute or chronic xenograft rejection of which only some folds have been lifted to allow glimpses of part of the total scene. Other obstacles are likely to arise when long-term survival is achieved. These obstacles include retroviral infections, transfer of prions and severe side effects of the massive immunosuppression which will be needed. Moral, ethical and religious concerns are under debate and the species-specific production of proteins of the foreign donor species developed for clinical use suddenly appears to be a greater problem than anticipated

    Effective field theory description of halo nuclei

    Full text link
    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4^4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.Comment: 104 pages, 31 figures. Topical Review for Journal of Physics G. v2 incorporates several modifications, particularly to the Introduction, in response to referee reports. It also corrects multiple typos in the original submission. It corresponds to the published versio

    Simulating the impact of the Smith Cloud

    Get PDF
    We investigate the future evolution of the Smith Cloud by performing hydrodynamical simulations of the cloud impact onto the gaseous Milky Way Galactic disk. We assume a local origin for the cloud and thus do not include a dark matter component to stabilize it. Our main focus is the cloud's influence on the local and global star formation rate (SFR) of the Galaxy and whether or not it leads to an observable event in the far future. Our model assumes two extremes for the mass of the Smith Cloud, an upper mass limit of 107^7 M_{\odot} and a lower mass limit of 106^6 M_{\odot}, compared to the observational value of a few 106^6 M_{\odot}. In addition, we also make the conservative assumption that the entirety of the cloud mass of the extended Smith Cloud is concentrated within the tip of the cloud. We find that the impact of the low-mass cloud produces no noticeable change in neither the global SFR nor the local SFR at the cloud impact site within the galactic disk. For the high-mass cloud we find a short-term (roughly 5 Myr) increase of the global SFR of up to 1 M_{\odot} yr1^{-1}, which nearly doubles the normal Milky Way SFR. This highly localized starburst should be observable.Comment: 14 pages, 5 figure

    Efimov universality with Coulomb interaction

    Full text link
    The universal properties of charged particles are modified by the presence of a long-range Coulomb interaction. We investigate the modification of Efimov universality as a function of the Coulomb strength using the Gaussian expansion method. The resonant short-range interaction is described by Gaussian potentials to which a Coulomb potential is added. We calculate binding energies and root mean square radii for the three- and four-body systems of charged particles and present our results in a generalised Efimov plot. We find that universal features can still be discerned for weak Coulomb interaction, but break down for strong Coulomb interaction. The root-mean-square radius plateaus at increasingly smaller values for strong Coulomb interaction and the probablity distributions of the states become more concentrated inside the Coulomb barrier. As an example, we apply our universal model to nuclei with an alpha-cluster substructure. Our results point to strong non-universal contributions in that sector.Comment: 18 pages, 9 figures, final version (with small orthographical corrections

    Universal few-body physics in a harmonic trap

    Get PDF
    Few-body systems with resonant short-range interactions display universal properties that do not depend on the details of their structure or their interactions at short distances. In the three-body system, these properties include the existence of a geometric spectrum of three-body Efimov states and a discrete scaling symmetry. Similar universal properties appear in 4-body and possibly higher-body systems as well. We set up an effective theory for few-body systems in a harmonic trap and study the modification of universal physics for 3- and 4-particle systems in external confinement. In particular, we focus on systems where the Efimov effect can occur and investigate the dependence of the 4-body spectrum on the experimental tuning parameters.Comment: 20 pages, 10 figures, final version, new references adde

    Universal physics of bound states of a few charged particles

    Get PDF
    We study few-body bound states of charged particles subject to attractive zero-range/short-range plus repulsive Coulomb interparticle forces. The characteristic length scales of the system at zero energy are set by the Coulomb length scale DD and the Coulomb-modified effective range reffr_{\mathrm{eff}}. We study shallow bound states of charged particles with DreffD\gg r_{\mathrm{eff}} and show that these systems obey universal scaling laws different from neutral particles. An accurate description of these states requires both the Coulomb-modified scattering length and the effective range unless the Coulomb interaction is very weak (DD\to \infty). Our findings are relevant for bound states whose spatial extent is significantly larger than the range of the attractive potential. These states enjoy universality -- their character is independent of the shape of the short-range potential.Comment: 8 pages, 6 figures, extended discussion, results unchanged, to appear in Phys. Lett.

    Star formation rates of distant luminous infrared galaxies derived from Halpha and IR luminosities

    Full text link
    We present a study of the star formation rate (SFR) for a sample of 16 distant galaxies detected by ISOCAM at 15um in the CFRS0300+00 and CFRS1400+52 fields. Their high quality and intermediate resolution VLT/FORS spectra have allowed a proper correction of the Balmer emission lines from the underlying absorption. Extinction estimates using the Hbeta/Hgamma and the Halpha/Hbeta Balmer decrement are in excellent agreement, providing a robust measurement of the instantaneous SFR based on the extinction-corrected Halpha luminosity. Star formation has also been estimated exploiting the correlations between IR luminosity and those at MIR and radio wavelengths. Our study shows that the relationship between the two SFR estimates follow two distinct regimes: (1) for galaxies with SFRIR below ~ 100Msolar/yr, the SFR deduced from Halpha measurements is a good approximation of the global SFR and (2) for galaxies near of ULIRGs regime, corrected Halpha SFR understimated the SFR by a factor of 1.5 to 2. Our analyses suggest that heavily extincted regions completely hidden in optical bands (such as those found in Arp 220) contribute to less than 20% of the global budget of star formation history up to z=1.Comment: (1) GEPI, Obs. Meudon, France ;(2) CEA-Saclay, France ;(3) ESO, Gemany ;(4) IAC, Spain. To appear in A&

    The Coronal Analysis of SHocks and Waves (CASHeW) Framework

    Full text link
    Coronal Bright Fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed in extreme ultraviolet (EUV) light as transient bright fronts of finite width, propagating away from the eruption source. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between low coronal waves and coronal mass ejection (CME)-driven shocks. EUV imaging with the Atmospheric Imaging Assembly(AIA) instrument on the Solar Dynamics Observatory (SDO) has proven particularly useful for detecting CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the Coronal Analysis of SHocks and Waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the Interactive Data Language (IDL). In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.Comment: Accepted for publication in the Journal of Space Weather and Space Climate (SWSC
    corecore